
Linked List Implementation

Data-structure-palooza

Checkout LinkedLists project from SVN

Understanding the
engineering trade-offs when
storing data

 Efficient ways to store data based on how
we’ll use it

 The main theme for the last 1/6 of the course

 So far we’ve seen ArrayLists
◦ Fast addition to end of list

◦ Fast access to any existing position

◦ Slow inserts to and deletes from middle of list

 What if we have to add/remove data from a
list frequently?

 A LinkedList supports this:
◦ Fast insertion and removal of elements

 Once we know where they go

◦ Slow access to arbitrary elements

data

data

data

data

data null

Insertion, per Wikipedia

“random access”

 void addFirst(E element)

E getFirst()

E removeFirst()

 E get(int k)

 What if you want to access the rest of the list?

Iterator<E> iterator()

◦ An iterator<E> has methods:

 boolean hasNext()

 E next()

 E remove()

What would you expect the run-time

of these operations to be?

Answer: O(1) [do you see why?]

What would you expect the run-time of this operation to be,

in terms of k? For a worst-case value of k?

Answer: O(k) to get the kth element, worst-case is O(n)

where n is the length of the list [do you see why?]

What do you think these methods do?

In particular, what element should

remove remove?

What would you expect the run-times

of these operation to be?

Answer: O(1) [do you see why?]

Enhanced For Loop What Compiler Generates

for (String s : list) {

// do something

}

Iterator<String> iter =

list.iterator();

while (iter.hasNext()) {

String s = iter.next();

// do something

}

 A simplified version, with just the essentials

 Won’t implement the java.util.List interface

 Will have the usual linked list behavior
◦ Fast insertion and removal of elements

 Once we know where they go

◦ Slow random access

Node

E data

Node next

Node(E data)

ListIterator<E>

Node position

boolean hasNext()
E next()

void remove()

void add(E data)

MyLinkedList<E>

Node firstNode

void addFirst(E data)

E getFirst()

E removeFirst()

int length()

firstNode, and from

there many Nodes

If firstNode

is null,

what does

that mean?

position: the Node most recently

returned by next.

If position is null,

what does that mean?

Node is a recursive

data structurejava.util.LinkedList

has many more

methods

The only
blood these
contracts are
signed in is
from me
cutting my
hand trying
to open the
d@^mned CD
case.

 Boil down data types (e.g., lists) to their
essential operations

 Choosing a data structure for a project then
becomes:
◦ Identify the operations needed

◦ Identify the abstract data type that most efficient
supports those operations

 Goal: that you understand several basic
abstract data types and when to use them

 Array List

 Linked List

 Stack

 Queue

 Set

 Map

Implementations for all of
these are provided by the Java
Collections Framework in the

java.util package.

Q1

Operations
Provided

Array List
Efficiency

Linked List
Efficiency

Random access O(1) O(n)

Add/remove item O(n) O(1)

Q1

 A last-in, first-out (LIFO) data structure

 Real-world stacks
◦ Plate dispensers in the cafeteria

◦ Pancakes!

 Some uses:
◦ Tracking paths through a maze

◦ Providing “unlimited undo” in an application

Operations
Provided

Efficiency

Push item O(1)

Pop item O(1)

Implemented by
Stack, LinkedList,
and ArrayDeque in
Java

Q1

 A first-in, first-out (FIFO) data structure

 Real-world queues
◦ Waiting line at the BMV

◦ Character on Star Trek TNG

 Some uses:
◦ Scheduling access to shared resource (e.g., printer)

Operations
Provided

Efficiency

Enqueue item O(1)

Dequeue item O(1)

Implemented by
LinkedList and
ArrayDeque in Java

Q1

 Unordered collections without duplicates

 Real-world sets
◦ Students

◦ Collectibles

 Some uses:
◦ Quickly checking if an item is in a collection

Operations HashSet TreeSet

Add/remove item O(1) O(log n)

Contains? O(1) O(log n)

Can hog space Sorts items! Q1

 Associate keys with values

 Real-world “maps”
◦ Dictionary

◦ Phone book

 Some uses:
◦ Associating student ID with transcript

◦ Associating name with high scores

Operations HashMap TreeMap

Insert key-value pair O(1) O(log n)

Look up value for key O(1) O(log n)

Can hog space Sorts items by key! Q1

